Målinger på malings slidstyrke og frigivet mikroplast ved mekanisk slitage

Nærværende undersøgelse er lavet på Aalborg Universitet, Institut for Byggeri, By og Miljø, Thomas Manns Vej 23, 9220 Aalborg. Ansvarlige forskere har været Professor Jes Vollertsen og Lektor Alvise Vianello. Arbejdet blev udført i perioden efterår 2023 til sommer 2024.

Metode

I alt 30 malinger blev modtaget hos Aalborg Universitet. Disse blev først undersøgt ved hjælp af ATR-FTIR spektroskopi (Attenuated Total Reflectance – Fourier Transform Infrared Spectroscopy) for at vurdere deres kemiske sammensætning. Denne teknik giver absorptionsspektre over et bredt bølgenummerinterval (bølgelængdeinterval), i dette tilfælde 650 – 4000 cm⁻¹. Det anvendte instrument var en Cary 630 FTIR Spektrometer fra Agilent Technologies med et diamant-interntreflektionselement (Figur 1). Først blev en dråbe maling påført et fleksibelt bæremedie, ladet hærde, og derpå analyseret med ATR-FTIR'en. De opnåede spektre blev fortolket med det til instrumentet medfølgende bibliotek såvel som ekspertviden om fortolkning af denne slags spektre.

Figur 1. Cary 630 FTIR Spektrometer fra Agilent Technologies med et diamant-internt-reflektionselement

Herefter blev malingerne påført aluminiumsplader med et metalinstrument, der påfører lag af kontrolleret tykkelse. Malingen blev påført ad to omgange. Malingerne blev derpå ladet hærde den af producenten anbefalede hærdningstid. Efter hærdning, blev pladerne placeret i en til formålet udviklet maskine, der udsætter dem for kontrolleret slid (Figur 20g Figur 3).

Figur 2. Instrument til kontrolleret slid af plader påført maling

Figur 3. Plade med maling der undergår kontrolleret slid.

Pladerne blev vejet før slitageforsøg, og derpå hver time i seks timer. Pulver fra slitagemålingerne blev opsamlet og analyseret for størrelsesfordeling på et Nano Xplora Plus confocal Raman mikroskop udstyret med en Peltier-cooled 2048 × 70 pixel CCD Syncerity detektor, tre solid-state laser kilder (Horiba SAS, France), og et 50x objektiv med numerisk aperture på 0.75 (Olympus, Japan) (Figur 4).

Et eksempel på et visuelt billede med tilhørende kemisk bestemmelse af en enkelt partikel ses på Figur 5. Spektret viser en partikel indeholdende titanium dioxid (TiO₂), som er et typisk hvidt pigment i maling.

Figur 4. Raman mikroskop til undersøgelse af partikler frigivet ved slitageforsøg.

Figur 5. Eksempel på et visuelt billede med tilhørende kemisk bestemmelse af en enkelt partikel som målt med Raman mikroskopet (Figur 4).

Resultater

Sammensætningen af malinger, som bestemt med ATR-FTIR fremgår af Tabel 1.

Tabel 1. Resultat af ATR-FTIR bestemmelse af de 30 modtagne malinger

	Hovedbestanddel	Yderligere signal
1	Karbonater (fx CaCO3)	svagt organisk signal
2	Karbonat (fx CaCO3)	svagt organisk signal
3	Polyvinyl acetat	
4	Akryl/ styreneret	Karbonater (fx CaCO ₃)
5	Akryl	Karbonater (fx CaCO ₃)
6	Akryl	Karbonater (fx CaCO ₃) +
		Kaolin
7	Akryl	Karbonater (fx CaCO ₃)
8	Akryl	Karbonater (fx CaCO ₃) +
		silikater
9	Akryl	svagt signal of
		Karbonater (fx CaCO ₃)

10	Akryl	Karbonater (fx CaCO ₃) +
		silikater
11	Akryl	Karbonater (fx CaCO ₃) +
		silikater
12	Karbonat (fx CaCO3)	svagt organisk signal
13	Akryl	Kaolin (low signal)
14	Karbonat (fx CaCO3)	
15	Karbonater og silikater	Organisk materiale
		signal, sandsynligvis
		Akryl
16	Karbonat (fx CaCO3)	svagt organisk signal
17	Karbonat (fx CaCO3)	
18	Polyvinyl acetat	Kaolin (low signal)
19	Karbonater and silikater	
20	Polyvinyl acetat	Kaolin (high signal)
21	Akryl emulsion	
22	Akryl/styreneret	
23	Alkyd-baseret	Karbonater (fx CaCO ₃)
24	Akryl	
25	Akryl	
26	Akryl	
27	Akryl/Uretan	Kaolin
28	Linolie (Linseed oil)	Karbonater (fx CaCO ₃)
29	Polyuretan olie	
	modificeret	
30	Linolie (Linseed oil)	Karbonater (fx CaCO ₃)

For slitageforsøgene var middel vægttabet 5.2% (median vægttab 3.3%). 73.3% af malingerne havde et vægttab $\leq 5\%$ (n = 22), 13.3% havde et vægttab på 5 – 10% (n = 4), 13.3% havde et vægttab > 10% (n = 4) og maling 17 tabte 90.3% af sin vægt i løbet af de første 3 timer, efter hvilket det pågældende forsøg blev afbrudt. Resultaterne er for hver time vist grafisk i Figur 6, og et overblik over samlet vægttab er givet i Tabel 2.

Figur 6. Akkumuleret vægttab efter 6 timer. For maling 17 er vægttabet dog efter 3 timer, idet al maling var slidt af efter 3 timer.

Tabel 2. Akkumuleret vægttab efter 6 timer. For maling 17 er vægttabet dog efter 3 timer, idet al maling var slidt af efter 3 timer.

Paint	% vægttab
1	5.1
2	4.1
3	2.3
4	3.0
5	3.7
6	6.2
7	2.0
8	3.5
9	1.4
10	2.6
11	2.3
12	24.8
13	2.8
14	4.3
15	1.6
16	19.7
17*	90.3
18	1.7
19	12.1
20	2.2
21	5.1
22	2.1
23	5.5
24	2.3
25	3.6
26	1.5
27	4.5
28	3.7
29	4.1
30	3.7

Slitagepartiklerne blev målt på Raman mikroskopet for 28 ud af de 30 malinger. Tabel 3 og Tabel 4 viser hvor mange partikler der blev fundet, fordelt på størrelsesintervaller, mens Figur 7 viser de samme data grafisk. Figur 8 viser de samme data som kontinueret størrelsesfordeling af alle partikler.

ID	Antal	Median	Q1	Q3	Middel	St. afv.
	partikler	Feret	Feret	Feret	Feret	Feret
	identificeret	Diameter	Diameter	Diameter	Diameter	Diameter
	(n)	(µm)	(µm)	(µm)	(µm)	(µm)
Maling 1	9929	10.06	6.54	15.75	13.70	15.43
Maling 2	4779	4.56	2.87	9.80	10.94	25.76
Maling 3	4237	4.09	2.87	9.45	10.54	23.28
Maling 4	8330	3.11	2.86	6.04	9.58	21.75
Maling 5	9623	3.92	2.86	9.45	9.87	18.63
Maling 6	14521	5.10	3.11	14.50	12.27	20.62
Maling 7	4105	4.58	3.34	15.70	14.05	21.82
Maling 8	7590	11.98	4.78	26.79	21.56	29.17
Maling 9	4060	9.60	4.78	18.82	15.64	21.82
Maling 10	13715	8.75	3.27	23.55	19.31	28.41
Maling 11	24199	3.27	2.39	7.69	10.67	22.35
Maling 12	24798	2.59	2.39	3.41	4.93	26.38
Maling 13	17161	2.59	2.39	4.56	5.98	11.88
Maling 14	14791	2.59	2.39	4.25	5.13	12.90
Maling 15	58661	3.27	2.59	4.25	4.53	6.28
Maling 16	14445	2.59	2.39	3.80	4.86	30.96
Maling 17	23512	5.77	3.41	10.65	10.81	19.89
Maling 18	63970	3.11	2.39	3.80	3.85	4.47
Maling 19	13960	3.27	2.39	5.12	6.45	34.42
Maling 20	30650	2.59	1.87	3.80	4.45	8.70
Maling 21	36521	2.59	2.39	5.04	6.31	12.49
Maling 22	25259	3.41	2.39	10.00	8.95	14.46
Maling 23	31032	3.41	2.39	6.80	6.59	9.84
Maling 24	5645	10.65	4.25	24.05	17.99	20.54
Maling 25	10354	7.73	4.25	14.26	11.87	13.20
Maling 26	7371	6.80	3.80	11.24	10.33	20.70
Maling 27	4483	4.56	2.59	12.98	10.66	15.22
Maling 28	26961	3.41	2.39	7.68	7.93	15.69
Maling 29	8944	5.12	2.59	11.25	10.51	16.12
Maling 30	5968	6.53	3.41	12.91	12.44	21.08

Tabel 3. Oversigt over størrelser på de identificerede malingpartikler.

Tabel 4. Malingpartikler fordelt på størrelsesintervaller

ID	0-10	10-20	20-30	30-40	40-50	50-100	100-250	250-500	>500
	μm	μm	μm	μm	μm	μm	μm	μm	μm
Maling 1	4837	3476	912	329	171	168	29	7	0
Maling 2	3596	676	205	102	65	80	44	9	2
Maling 3	3214	511	216	121	64	76	27	7	1
Maling 4	6866	530	247	221	146	260	54	5	1
Maling 5	7283	1097	572	270	147	206	44	3	1
Maling 6	9413	2714	1092	529	298	359	105	9	2
Maling 7	2766	505	299	164	114	209	46	2	0
Maling 8	3411	1670	845	567	343	578	162	14	0
Maling 9	2127	994	428	237	102	143	23	5	1
Maling 10	7228	2450	1485	775	493	946	321	17	0

Maling 11	18958	2020	1068	648	405	793	293	12	2
Maling 12	23261	856	312	133	90	99	26	11	10
Maling 13	15012	1117	533	233	116	122	24	3	1
Maling 14	13559	872	161	61	35	63	30	10	0
Maling 15	55808	1679	529	262	150	204	28	1	0
Maling 16	13872	377	98	29	10	19	17	14	9
Maling 17	17091	3783	1234	520	259	432	171	20	2
Maling 18	62205	1125	295	155	80	97	12	1	0
Maling 19	12554	926	250	95	45	47	23	7	13
Maling 20	28614	1138	452	195	95	119	34	2	1
Maling 21	31819	2543	989	466	256	376	65	4	3
Maling 22	18946	3264	1559	653	361	420	48	7	1
Maling 23	26380	2943	873	389	165	239	42	1	0
Maling 24	2700	1190	722	406	247	331	48	1	0
Maling 25	6288	2485	875	337	170	170	28	1	0
Maling 26	5167	1451	415	141	81	85	25	4	2
Maling 27	3088	734	347	124	76	91	22	1	0
Maling 28	21837	2994	1007	445	218	349	100	9	2
Maling 29	6351	1454	516	242	140	199	40	2	0
Maling 30	3989	1072	405	173	113	167	46	1	2

Figur 7. Malingpartikler fordelt på størrelsesintervaller

Figur 8. Fordeling af alle partikler fra de målte malinger. Stregen i midten af boksene viser medianværdien, den nederste og øverste afgrænsning viser henholdsvis 25% og 75% fraktilen. Enden af stregen viser 5% henholdsvis 95% fraktilen, mens prikkerne over kasserne viser enkeltmålinger ud over 95% fraktilen.

Figur 9. Mikroskopibilleder af 15 af de undersøgte malinger.

Figur 10. Syv eksempler på hvordan HORIBA Raman instrumentet og dets software (LabSpec) har analyseret størrelsesfordelingen på malingerne

Sammenfatning

Malinger, der indeholdt plastpolymerer i et omfang, der kunne identificeres med FTIR, tenderede til at være mere modstandsdygtige overfor mekanisk slid. Partiklerne, der blev dannet, tenderede til at være små. Der var dog ingen systematisk forskel på partikelstørrelse for malinger, der indeholdt målbare mængder af plastpolymerer, og dem der ikke gjorde. For alle malinger var medianværdien af partiklernes størrelse (deres længde) under 12 µm (medianværdi betyder: Der hvor halvdelen af partiklerne er større, og halvdelen af partiklerne er mindre end den givne værdi). Nogle havde medianværdier helt ned til 2,6 µm. Dette betyder, at en væsentlig del af partiklerne vil kunne finde vej til de dybere dele af lungerne ifald de indåndes. Man skal dog huske på, at det ikke blev undersøgt hvorvidt de gennemførte slidforsøg giver partikler af samme størrelse som vil frigives ved naturligt slid i bygninger.